Avances en las tecnologías para el tratamiento de la diabetes

30.10.2017
Diabetologia – postepy 2016/2017
Jacek Sieradzki

La prevalencia de la diabetes sigue aumentando y según los pronósticos en 2040 en el mundo habrá más de 640 millones de diabéticos. Esto se debe a la creciente epidemia de obesidad que conlleva una resistencia a la insulina y, en consecuencia, el desarrollo de la diabetes tipo 2. Aunque se han descrito más de 150 genes que posiblemente pueden causar su desarrollo, no se ha conseguido frenar su prevalencia epidémica.1 La epidemia se observa sobre todo en los países en vías de desarrollo de América Latina y Asia.2,3 El problema que se presenta en el tratamiento de la diabetes es el de centrarse en el control glucémico en ayunas y entre comidas, mientras que se omite la cuestión de la glucemia después de la comida y es este el criterio que con más probabilidad será el próximo objetivo en el tratamiento diabético.4 Un problema importante que se plantea en la actualidad es la evaluación de la seguridad cardiovascular de los fármacos antidiabéticos. La Administración de Alimentos y Medicamentos (FDA, Food and Drug Administration) dedicó a este asunto una directiva publicada por primera vez en 2008 y actualizada en 2016.5,6 En ella se basan los estudios prospectivos sobre fármacos hipoglucemiantes realizados en los últimos años, incluidos los estudios que se terminaron en 2016.

Avances en las tecnologías para el tratamiento de la diabetes

La aprobación y el registro de “páncreas artificial” (Medtronic’s MiniMed 670G System) por la FDA en 2016, así como el apoyo dado por la FDA para los estudios acerca de “sistemas de lazo cerrado”68, llamaron la atención sobre los sistemas automáticos de administro de insulina y control de diabetes. Con respecto a la insulinoterapia durante el embarazo hay que mencionar que el uso durante todo el día del lazo cerrado era más eficaz en comparación con la terapia de bomba de insulina y sensores de glucosa. Durante la administración de la glucosa mediante el método del lazo cerrado se objetivó un mejor control de la diabetes y menos episodios de hipoglucemia grave.69 Parece ser que después de muchos años de dificultades el sistema de lazo cerrado, comúnmente conocido como “páncreas artificial”, está ganando una dimensión práctica.70 La seguridad y eficacia de los sistemas en cuestión ya se han demostrado en varias publicaciones y se han confirmado tanto en el uso temporal (solo por la noche) como durante todo el día. Se ha comprobado su seguridad también para niños y adolescentes.71-73 El uso de lazo cerrado utilizado en el ámbito doméstico en adolescentes con diabetes tipo 1 sin un grado de control adecuado permitió corregirla de mejor manera sin aumentar el riesgo de hipoglucemia.74 No obstante, los sistemas de lazo cerrado requieren todavía más estudios que evalúen no solo el control de la diabetes sobre la base de los niveles de HbA1c, sino también la glucemia con el uso de sistema de monitorización continua de la glucemia. Los dispositivos de lazo cerrado pueden servir también para la evaluación de varios fenómenos clínicos, como por ejemplo para determinar los cambios en las necesidades de insulina y para la corrección de sus niveles, especialmente por la noche, lo cual es uno de los problemas más difíciles en la insulinoterapia.76 El uso de bombas de insulina subcutáneas y el control constante de la glucemia se abordaron con detalle en las guías de práctica de la Asociación Americana de Endocrinología (The Endocrine Society). Las guías mencionadas advierten de la relevancia práctica que tiene la infusión subcutánea de la insulina y el control continuo de la glucemia e indican que la cooperación entre estos dos sistemas es sumamente útil en la práctica clínica.77 Esta combinación da la posibilidad del uso de la función denominada “hipobloqueo”, que frena automáticamente la infusión de insulina cuando aparece un riesgo de hipoglucemia, y del uso del programa que minimiza un aumento previsto de glucemia, lo cual permite prevenir la hiperglucemia. Este sistema, utilizado de noche y en el ámbito doméstico, ayuda de manera eficaz a controlar la inestabilidad de la diabetes tipo 1.78
También en cuanto a los sensores de glucemia de control continuo se evidenciaron avances: se comprobó la seguridad y eficacia del sensor implantado incluso durante 180 días. El mismo estudio prospectivo y multicéntrico demostró que el sensor implantado mantuvo la exactitud de medidas de glucemia durante la observación.79 Es importante destacar que los pacientes mayores tenían menos reparo ante el uso de estos dispositivos, mientras que las personas jóvenes (18-25 años) tenían más reparo, se sentían más incómodas al usarlos y el control de diabetes era peor en su caso. Estas observaciones apuntan a la necesidad de educar e intervenir entre los pacientes más jóvenes.80

Bibliografía:

1. Persaud S.J., Jones P.M., A wake-up call for type 2 diabetes?, N. Engl. J. Med., 2016, 375: 1090–1092.
2. Alegre-Diaz J., Herrington W., Lopez-Cervantes M. y cols., Diabetes and cause-specific mortality in Mexico City. N. Engl. J. Med., 2016, 375: 1961–1971.
3. Nanditha A., Ma R.C.W., Ramachandran A. y cols., Diabetes in Asia and the Pacific: implications for the global epidemic, Diabetes Care, 2016, 39: 472–485.
4. Riddle MC: Basal glucose can be controlled, but the prandial problem persists – it’s the next target!, Diabetes Care, 2017, 40: 291–300.
5. US Food and Drug Administration: Clinical perspectives on FDA guidance for industry: diabetes mellitus: evaluating CV risk in new anti-diabetic therapies to treat T2DM. http:// www.fda.gov/downloads/Drugs/NewsEvents/UCM209 087.pdf. Accessed 29 Jan.2016
6. Regier EE, Venkat MV, Close KL: More than 7 years of hindsight: revisiting the FDA 2008 Guidance on Cardiovascular Outcomes trials for type 2 diabetes medications, Clin. Diabetes, 2016, 34: 173–180.
7. American Diabetes Association: Report of the expert committee on the diagnosis and classification of diabetes mellitus, Diabetes Care, 1997, 20: 1183–1197.
8. WHO: Definition, diagnosis and classification of diabetes mellitus and its complications. Report of a WHO consultation. Part 1. Diagnosis and classification of diabetes mellitus. WHO, Geneva, 1999.
9. Yudkin J.S., “Prediabetes”: Are there problems with this label? Yes, the label creates further problems!, Diabetes Care, 2016, 39: 1468–1471.
10. Cefalu W.T., “Prediabetes”: Are there problems with this label? No, we need heightened awareness of this condition!, Diabetes Care, 2016, 39: 1472–1477.
11. Schwarz S.S., Epstein S., Corkey B.E. y cols., The time is right for a new classification system for diabetes: rationale and implications of the beta-cell-centric classification schema, Diabetes Care, 2016, 39: 179–186
12. Skyler J.S., Bakris G.L., Bonifacio E. y cols., Differentiation of diabetes by pathophysiology, natural history, and prognosis, Diabetes, 2017, 66: 241–255.
13. American Diabetes Association: Standards of medical care in diabetes – 2017. 2. Classification and diagnosis of diabetes, Diabetes Care, 2017, 40 (supl. 1): S11–S24.
14. White M.G., Shaw J.A.M., Taylor R., Type 2 diabetes: the pathologic basis of reversible dysfunction, Diabetes Care, 2016, 39: 2080–2088.
15. Wanner C., Inzucchi S.E., Lachin J.M. y cols., Empagliflozin and progression of kidney disease in type 2 diabetes, N. Engl. J. Med., 2016, 375: 323–334.
16. Zinman B., Wanner C., Lachin J.M. y cols., Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes, N. Engl. J. Med., 2015, 373: 2117–2128.
17. Rosenstock J., Chuck L., Gonzalez-Ortiz M. y cols., Initial combination therapy with canagliflozin plus metformin versus each component as monotherapy for drug-naive type 2 diabetes, Diabetes Care, 2016, 39: 353–362.
18. Davies M.J., Bain S.C., Atkin S.L. y cols., Efficacy and safety of liraglutide versus placebo as add-on to glucose-lowering therapy in patients with type 2 diabetes and moderate renal impairment (LIRA-RENAL): a randomized clinical trial, Diabetes Care, 2016, 39: 222–230.
19. Cornel J.H., Bakris G.L., Stevens S.R. y cols., Effect of sitagliptin on kidney function and respective cardiovascular outcomes in type 2 diabetes: outcomes from TECOS, Diabetes Care, 2016, 39: 2304–2310.
20. Kalantar-Zadehy K., Kovesdy C.P.: Should restrictions be relaxed for metformin use in chronic kidney disease? No, we should never again compromise safety!, Diabetes Care, 2016, 39: 1281–1286.
21. Bakris G.L., Molitch M.E., Should restrictions be relaxed for metformin use in chronic kidney disease? Yes, they should be relaxed! What the fuss?, Diabetes Care, 2016, 39: 1287–1291.
22. Ragot S., Saulnier P.-J., Velho G. y cols., Dynamic changes in renal function are associated with major cardiovascular events in patients with type 2 diabetes, Diabetes Care, 2016, 39: 1259–1266.
23. Ku E., McCulloch C.E., Mauer M. y cols., Association between blood pressure and adverse renal events in type 1 diabetes, Diabetes Care, 2016, 39: 2218–2224.
24. Li L., Jick S., Breitenstein S., Michel A.: Prevalence of diabetes and diabetic nephropathy in a large US. Commertially insured pediatric population 2002–2013, Diabetes Care, 2016, 39: 278–284.
25. Russo G.T., De Cosma S., Viazzi F. y cols., Plasma triglycerides and HDL-C levels predict the development of diabetic kidney disease in subjects with type 2 diabetes: the AMD Annals Initiative, Diabetes Care, 2016, 39: 2278–2287.
26. Wong M.G., Perkovic V., Chalmers J. y cols., Long-term benefits of intensive glucose control for preventing end-stage kidney disease: ADVANCE-ON, Diabetes Care, 2016, 39: 694–700.
27. Novak M., Mucsi I., Rhee C.M. y cols., Increased risk of incident chronic kidney disease, cardiovascular disease, and mortality in patients with diabetes with comorbid depression, Diabetes Care, 2016, 39: 1940–1949.
28. Tagawa A., Yasuda M., Kume S. y cols., Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy, Diabetes, 2016, 65: 755–767.
29. Niewczas M., Mathew A.V., Croall S. y cols., Circulating modified metabolites and risk of ESRD in patients with type 1 diabetes and chronic kidney disease, Diabetes Care, 2017, 40: 383–390.
30. Skupien J., Warram J.H., Smiles A.M. y cols., Patterns of estimated glomerular filtration rate decline leading to end-stage renal disease in type 1 diabetes, Diabetes Care, 2016, 39: 2262–2269.
31. Church T.J., Haines S.T.: Treatment approach to patients with severe insulin resistance, Clin. Diabetes, 2016, 34: 97–104.
32. Kernan W.N., Viscoli C.M., Furie K.L y cols., Pioglitazone after ischemic stroke or transient ischemic attack, N. Engl. J. Med., 2016, 374: 1321–1331.
33. Inzucchi S.E., Viscoli C., Young L.H. y cols., Pioglitazone prevents diabetes in patients with insulin resistance and cerebrovascular disease, Diabetes Care, 2016, 39: 1684–1692.
34. Semenkovich C.F., Insulin resistance and a long, strange trip, N. Engl. J. Med., 2016, 374: 1378–1379.
35. Malone J.I., Diabetic central neuropathy: CNS damage related to hyperglycemia, Diabetes, 2016, 65: 355–357.
36. Mazaika P.K., Weinzimer S.A., Mauras N. y cols., Variations in brain volume and growth in young children with type 1 diabetes, Diabetes, 2016, 65: 476–485.
37. Liu R., Wang H., Xu B. y cols., Cerebrovascular safety of sulfonylureas: the role of KATP channels in neuroprotection and the risk of stroke in patients with type 2 diabetes, Diabetes, 2016, 65: 2795–2809.
38. Pop-Busui R., Boulton A.J.M., Feldman E.L. y cols., Diabetic neuropathy: a position statement by the American Diabetes Association, Diabetes Care, 2017, 40: 136–154.
39. American Diabetes Association: Standards of medical care in diabetes – 2017. Microvascular complications and food care, Diabetes Care, 2017, 40 (supl. 1): S88–S98.
40. Vinik A.I.: Diabetic sensory and motor neuropathy, N. Engl. J. Med., 2016, 374: 1455–1464.
41. Almurdhi M.M., Reeves N.D., Bowling F.L. y cols., Reduced lower-limb muscle strength and volume in patients with type 2 diabetes in relation to neuropathy, intramuscular fat, and vitamin D levels, Diabetes Care, 2016, 39: 441–447.
42. Callaghan B.C., Xia R., Banerjee M. y cols., Metabolic syndrome components with symptomatic polyneuropathy independent of glycemic status, Diabetes Care, 2016, 39: 801–807.
43. Mundinger T.O., Mei Q., Foulis A.K. y cols., Human type 1 diabetes is characterized by an early, marked, sustained, and islet-selective loss of sympathetic nerves, Diabetes, 2016, 65: 2322–2330.
44. Von Scholten B.J., Hansen C.S., Hasbak P. y cols., Cardiac autonomic function is associated with the coronary microcirculatory function in patients with type 2 diabetes, Diabetes, 2016, 65: 3129–3138.
45. Hataling J.M., Sarma A.V., Patel D.P. y cols., Cardiovascular autonomic neuropathy, sexual dysfunction, and urinary incontinence in women with type 1 diabetes, Diabetes Care, 2016, 39: 1587–1593.
46. Rohling M., Strom M., Bonhof G. y cols., Differential patterns of impaired cardiorespiratory fitness and cardiac autonomic dysfunction in recently diagnosed type 1 and type 2 diabetes, Diabetes Care, 2017, 40: 246–252.
47. Polskie Towarzystwo Diabetologiczne: Zalecenia kliniczne dotycz±ce postepowania u chorych na cukrzyce 2017. Okre¶lenie celów leczenia cukrzycy, Diabetol. Prakt., 2017, 3 (supl. A): A9–A11.
48. Brahimaj A., Ligthart S., Ikram M.A. y cols., Serum levels of apolipoproteins and incident type 2 diabetes: a prospective study, Diabetes Care, 2017, 40: 346–351.
49. Hero C., Rawshani A., Svensson A.-M. y cols., Association between use of lipid-lowering therapy and cardiovascular diseases and death in individuals with type 1 diabetes, Diabetes Care, 2016, 39: 996–1003.
50. Azad N., Bahn G.D., Emanuele N.V. y cols., Association of blood glucose control and lipids with diabetic retinopathy in the Veterans Affaires Diabetes Trial (VADT), Diabetes Care, 2016, 39: 816–822.
51. Lu L., Koulman A., Petry C.J. y cols., An unbiased lipidomics approach identifies early second trimester lipids predictive of maternal glycemic traits and gestational diabetes mellitus, Diabetes Care, 2016, 39: 2232–2239.
52. Polskie Towarzystwo Diabetologiczne: Zalecenia kliniczne dotycz±ce postepowania u chorych na cukrzyce 2017. Cukrzyca a ci±?a, Diabetol. Prakt., 2017, 3 (supl. A): A53–A56.
53. Waters T.P., Dyer A.R., Scholtens D.M. y cols., Maternal and neonatal morbidity for women who would be added to the diagnosis of GDM using IADPSG criteria: a secondary analysis of the Hyperglycemia and Adverse Pregnancy Outcome study, Diabetes Care, 2016, 39: 2204–2210.
54. Moses R.G., Wong V.C.K., Lambert K. y cols., Seasonal changes in the prevalence of gestational diabetes mellitus, Diabetes Care, 2016, 39: 1218–1221.
55. Sovio U., Murphy H.R., Smith G.C.S.: Accelerated fetal growth prior to diagnosis of gestational diabetes mellitus: a prospective cohort study of nulliparous women, Diabetes Care, 2016, 39: 982–987.
56. Moses R.G., Cefalu W.T., Considerations in the management of gestational diabetes mellitus: “You are what your mother ate!”, Diabetes Care, 2016, 39: 13–15.
57. Schoenaker D.A.J.M., Mishra G.D., Callaway L.K., Soedamach-Muthu S.S.: The role of energy, nutrients, foods and dietary patterns in the development of gestational diabetes mellitus: a systematic review of observational studies, Diabetes Care, 2016, 39: 16–23.
58. Markovic T.P., Muirhead R., Overs S. y cols., Randomized controlled trial investigating the effects of a low-glycemic index diet on pregnancy outcomes in women at high risk of gestational diabetes mellitus: the GI baby study, Diabetes Care, 2016, 39: 31–38.
59. Koivusalo S.B., Rono K., Klemetti M.M. y cols., Gestational diabetes mellitus can be prevented by lifestyle intervention: the Finnish Gestational Diabetes Prevention Study (RADIEL). A randomized controlled trial, Diabetes Care, 2016, 39: 24–30.
60. Ferrara A., Hedderson M.M., Brown C.L. y cols., The comparative effectiveness of diabetes prevention strategies to reduce postpartum weight retention in women with gestational diabetes mellitus: the gestational diabetes effects on moms (GEM) cluster randomized controlled trial, Diabetes Care, 2016, 39: 65–74.
61. Sweeting A.N., Ross G.P., Hyett J. y cols., Gestational diabetes mellitus in early pregnancy: evidence for poor pregnancy outcomes despite treatment, Diabetes Care, 2016, 39: 75–81.
62. Klingensmith G.J., Pyle L., Nadeau K.J. y cols., Pregnancy outcomes in youth with type 2 diabetes: the TODAY Study experience, Diabetes Care, 2016, 39: 122–129.
63. Sellers E.A.C., Dean H.J., Shafer L.A. y cols., Exposure to gestational diabetes mellitus: impact on the development of early-onset type 2 diabetes in Canadian first nations and non-first nations offspring, Diabetes Care, 2016, 39: 2240–2246.
64. Appiah D., Schreiner P.J., Gunderson E.P. y cols., Association of gestational diabetes mellitus with left ventricular structure and function: the CARDIA study, Diabetes Care, 2016, 39: 400–407.
65. Syngelaki A., Nicolaides K.H., Balani J. y cols., Metformin versus placebo in obese pregnant women without diabetes mellitus, N. Engl. J. Med., 2016, 374: 434–443.
66. Nachum Z., Zafran N., Salim R. y cols., Glyburide versus metformin and their combination for the treatment of gestational diabetes mellitus: a randomized controlled study, Diabetes Care, 2017, 40: 332–337.
67. FDA 2016, http://www.accesdata.fda.gov. /cdrh_docs/pdf16/P160017a.pdf
68. FDA 2017, http://www.clinicaltrials.gov/
69. Stewart Z.A., Wilinska M.E., Hartnell S. y cols., Closed-loop insulin delivery during pregnancy in women with type 1 diabetes, N. Engl. J. Med., 2016, 375: 644–654.
70. Kovatchev B., Tamborlane W.V., Cefalu W.T., Cobelli C.: The artificial pancreas in 2016: a digital treatment ecosystem for diabetes, Diabetes Care, 2016, 39: 1123–1126.
71. Anderson S.M., Raghinaru D., Pinsker J.E. y cols., Multinational home use of closed-loop control is safe and effective, Diabetes Care, 2016, 39: 1143–1150.
72. Renard E., Forret A., Kropff J. y cols., Day-and-night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: results of a single-arm 1-month experience compared with previously reported feasibility study of evening and hirht at home, Diabetes Care, 2016, 39: 1151–1160.
73. Del Favero S., Boscari F., Messori M. y cols., Randomized summer camp crossover trial in 5- to 9-year-old children: outpatient wearable artificial pancreas is feasible and safe, Diabetes Care, 2016, 39: 1180–1185.
74. Tauschmann M., Allen J.M., Wilinska M.E. y cols., Home use of day-and-night hybrid closed-loop insulin delivery in suboptimally controlled adolescents with type 1 diabetes: a 3-week, free-living, randomized crossover trial, Diabetes Care, 2016, 39: 2019–2025.
75. Maahs D.M., Buckingham B.A., Castle J.R. y cols., Outcome measures for artificial pancreas clinical trials: a consensus report, Diabetes Care, 2016, 39: 1175–1179.
76. Ruan Y., Thabit H., Leelaranthna L. y cols., Variability of insulin requirements over 12 weeks of closed-loop insulin delivery in adults with type 1 diabetes, Diabetes Care, 2016, 39: 830–832.
77. Peters A.L., Ahmann A.J., Battelino T. y cols., Diabetes technology – continuous subcutaneous insulin infusion therapy and continuous glucose monitoring in adults: an Endocrine Society Clinical Practice Guideline, J. Clin. Endocr. Metab., 2016, Sept 2, doi: 10.1210/ jc.2016–2534
78. Spaic T., Driscoli M., Raghinaru D. y cols., Predictive hypeglycemia and hypoglycemia minimalization: in-home evaluation of safety, feasibility, and efficacy in overnight glucose control in type 1 diabetes, Diabetes Care, 2017, 40: 359–366.
79. Kropff J., Chaudhary P., Neupane S. y cols., Accuracy and longevity of an implantable continuous glucose sensor in the PRECISE study: a 180-day, prospective, multicenter, pivotal trial, Diabetes Care, 2017, 40: 63–68.
80. Tanenbaum M.L., Hanes S.J., Miller K.M. y cols., Diabetes device use in adults with type 1 diabetes: barriers to uptake and potential intervention targets, Diabetes Care, 2017, 40: 181–187.