Ejercicios anaeróbicos y la influencia en las lipoproteínas

27.10.2021
Wpływ wysiłku fizycznego na lipoproteiny
Anita Kaczmarek (MD), Aleksandra Uruska (MD, PhD)

Ejercicios anaeróbicos

La influencia de los ejercicios anaeróbicos (EAN) en las lipoproteínas sigue sin estar clara. La mayoría de estudios científicos indican que estos entrenamientos no impactan en las lipoproteínas, e incluso que no influyen negativamente en ellas. Sin embargo, según algunas investigaciones, estos ejercicios influyen positivamente en las lipoproteínas, en especial en el C-HDL. Se llevó a cabo un experimento en el que se analizaron dos grupos de participantes.21 El primer grupo entrenó por debajo del umbral anaeróbico y el segundo por encima (ambos grupos tuvieron una producción de energía similar). Los investigadores reconocieron que los EAN no influyen positivamente en las lipoproteínas, no pueden influir en la concentración de las lipoproteínas o pueden influir negativamente. Además, las concentraciones de HDL y HDL2 en suero y las proporciones colesterol/HDL, LDL/HDL y HDL2/HDL3 fueron diferentes en ambos tipos de entrenamiento. Los EAN redujeron la concentración de HDL y aumentaron la proporción LDL/HDL. Los EAN influyen en estos parámetros de forma opuesta a los EA. Esto puede ocurrir porque la LPL, que estimula la producción de HDL, no aumenta como resultado de la alta concentración de lactato en sangre arterial.

En un estudio sobre la influencia del tenis en la concentración de lipoproteínas,22 se descubrió que el aumento del umbral anaeróbico que apareció después de seis semanas de entrenamiento no guardaba relación con los cambios en el lipidograma. Se demostró que los EAN no influyen negativamente en el perfil lipídico, como sugerían distintos estudios.23 Las personas que practican este tipo de ejercicio suelen tener menos concentración de HDL y más de LDL. También se distinguen por concentraciones elevadas de TG y CT. Estas concentraciones son bastante distintas a las que se consiguen después de los EA.

Turgay y cols.24 presentaron las ventajas de los EAN en un estudio con mujeres jóvenes que practicaban judo. Un aspecto fundamental que analizaron es la influencia de los EAN en la enzima paraoxonasa-1 (PON-1) que se encuentra en las moléculas de HDL. Las HDL y la PON-1 colaboran en el plasma: las HDL facilitan la secreción de PON-1, lo que previene la oxidación de las HDL y LDL.25,26 La PON-1 hidroliza los ésteres aromáticos de los ácidos carboxílicos, los fosfatos orgánicos y fosfolípidos oxidados. Esta hidrólisis destruye los lípidos biológicamente activos en la LDL ligeramente oxidada. Además, la enzima hidroliza los peróxidos asociados a las lipoproteínas, lo que reduce el nivel de hidroperóxido de colesteril linoleato en la HDL oxidada. La PON-1 también produce hidróxidos de colesteril linoleato, pero no hidroperóxidos de ácidos grasos.27 Asimismo, la PON-1 previene la oxidación de las HDL, aunque algunas personas presentan el polimorfismo PON1-Q192R, una sustitución de glutamina por arginina en la secuencia de aminoácidos que construye la proteína codificada por este gen. Se compararon personas con y sin esta mutación. Los EAN provocaron un aumento de HDL (pero no de C-HDL2) en los pacientes sin mutación. Después, incrementaron la concentración de PON-1 en ambos grupos, lo que aumentó la concentración de HDL.

Salvadori y cols.28 confirmaron que la influencia positiva de los EAN estuvo relacionada con los ácidos grasos no esterificados (NEFA). Se observó que una sesión corta de EAN después de un entrenamiento aeróbico aumenta la concentración de NEFA (antes del ejercicio, concentración de 30 810 ± 3102 lEq min/l, y después 42382 ± 4232 lEq), mientras que el EA solo reduce la concentración de NEFA (resultados: 37 214 ± 4 005 lEq min/l antes y 24 280 ± 3614 lEq min/l después del deporte). Esto puede ocurrir porque se movilizan demasiados lípidos, y su cantidad es insuficiente. Esta activación puede estar relacionada con el incremento de algunas sustancias de actividad lipolítica inducido por el estrés anaeróbico.

Bibliografía:

1.Thompson PD, Buchner D, Pina IL, Balady GJ, Williams MA, Marcus BH, y cols., Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity), Circulation, 24 June 2003;107(24):3109-16.
2. Sugawara J, Otsuki T, Tanabe T, Hayashi K, Maeda S, Matsuda M, Physical activity duration, intensity, and arterial stiffening in postmenopausal women, Am J Hypertens., October 2006;19(10):1032-6.
3. Gates PE, Seals DR, Decline in large elastic artery compliance with age: a therapeutic target for habitual exercise, Br J Sports Med, November 2006;40(11):897-9.
4. Sattelmair JR, Pertman JH, Forman DE, Effects of physical activity on cardiovascular and noncardiovascular outcomes in older adults, Clin Geriatr Med, November 2009;25(4):677-702, viii-ix.
5. Yu X-H, Fu Y-C, Zhang D-W, Yin K, Tang C-K, Foam cells in atherosclerosis, Clin Chim Acta, 23 September 2013;424:245-52.
6. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults, Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III), JAMA, 16 May 2001;285(19):2486-97.
7. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, y cols., 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk, Eur Heart J, 01 2020;41(1):111-88.
8. Kuliszkiewicz-Janus M, Mohamed AS, Abod N, [The biology of HDL lipoprotein and its antisclerotic activity], Postepy Hig Med Dosw, 2006;60:307-15.
9. Ginter E, Kajaba I, Danger of very high HDL levels, Bratisl Lek Listy, 2017;118(6):319-20.
10. Tanaka Hirofumi, Dinenno Frank A., Monahan Kevin D., Clevenger Christopher M., DeSouza Christopher A., Seals Douglas R, Aging, Habitual Exercise, and Dynamic Arterial Compliance, Circulation, 12 September 2000;102(11):1270-5.
11. Kodama S, Tanaka S, Saito K, Shu M, Sone Y, Onitake F, y cols., Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: a meta-analysis, Arch Intern Med, 28 May 2007;167(10):999-1008.
12. Wang Y, Xu D, Effects of aerobic exercise on lipids and lipoproteins, Lipids in Health and Disease, 5 July 2017;16(1):132.
13. Kelley GA, Kelley KS, Aerobic exercise and HDL2-C: a meta-analysis of randomized controlled trials, Atherosclerosis, January 2006;184(1):207-15.
14. Halverstadt A, Phares DA, Wilund KR, Goldberg AP, Hagberg JM, Endurance exercise training raises high-density lipoprotein cholesterol and lowers small low-density lipoprotein and very low-density lipoprotein independent of body fat phenotypes in older men and women, Metab Clin Exp, April 2007;56(4):444-50.
15. Trejo-Gutierrez JF, Fletcher G, Impact of exercise on blood lipids and lipoproteins, Journal of Clinical Lipidology, 1 July 2007;1(3):175-81.
16. Couillard C, Després JP, Lamarche B, Bergeron J, Gagnon J, Leon AS, y cols., Effects of endurance exercise training on plasma HDL cholesterol levels depend on levels of triglycerides: evidence from men of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study, Arterioscler Thromb Vasc Biol, July 2001;21(7):1226-32.
17. Varady KA, St-Pierre AC, Lamarche B, Jones PJH, Effect of plant sterols and endurance training on LDL particle size and distribution in previously sedentary hypercholesterolemic adults, European Journal of Clinical Nutrition, April 2005;59(4):518-25.
18. Kraus WE, Houmard JA, Duscha BD, Knetzger KJ, Wharton MB, McCartney JS, y cols., Effects of the amount and intensity of exercise on plasma lipoproteins, N Engl J Med, 7 November 2002;347(19):1483-92.
19.Calabresi L, Franceschini G, Lecithin:cholesterol acyltransferase, high-density lipoproteins, and atheroprotection in humans, Trends Cardiovasc Med, February 2010;20(2):50-3.
20. Gill JMR, Hardman AE, Exercise and postprandial lipid metabolism: an update on potential mechanisms and interactions with high-carbohydrate diets (review), J Nutr Biochem, March 2003;14(3):122-32.
21. Aellen R, Hollmann W, Boutellier U, Effects of aerobic and anaerobic training on plasma lipoproteins, Int J Sports Med, October 1993;14(7):396-400.
22. Ferrauti A, Weber K, Strüder HK, Effects of tennis training on lipid metabolism and lipoproteins in recreational players, Br J Sports Med, December 1997;31(4):322-7.
23. Kipreos, George & Tripolitsioti, Alexandra & Stergioulas, Apostolos, (2010). The effects of anaerobic training in serum lipids and arachidonic acid metabolites, Biology of Exercise, 6. 10.4127/jbe.2010.0036.
24. Turgay F, Şişman AR, Aksu AÇ, Effects of anaerobic training on paraoxonase-1 enzyme (PON1) activities of high density lipoprotein subgroups and its relationship with PON1-Q192R phenotype, J Atheroscler Thromb, 2015;22(3):313-26.
25. Mackness MI, Arrol S, Abbott C, Durrington PN, Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase, Atherosclerosis, December 1993;104(1–2):129-35.
26. Shekhanawar M, Shekhanawar SM, Krisnaswamy D, Indumati V, Satishkumar D, Vijay V, y cols., The Role of ‘Paraoxonase-1 Activity’ as an Antioxidant in Coronary Artery Diseases, J Clin Diagn Res, July 2013;7(7):1284-7.
27. Chantepie S, Bochem AE, Chapman MJ, Hovingh GK, Kontush A, High-density lipoprotein (HDL) particle subpopulations in heterozygous cholesteryl ester transfer protein (CETP) deficiency: maintenance of antioxidative activity, PLoS ONE, 2012;7(11):e49336.
28. Salvadori A, Fanari P, Marzullo P, Codecasa F, Tovaglieri I, Cornacchia M, y cols., Short bouts of anaerobic exercise increase non-esterified fatty acids release in obesity, Eur J Nutr, February 2014;53(1):243-9.
29. Monda KL, Ballantyne CM, North KE, Longitudinal impact of physical activity on lipid profiles in middle-aged adults: the Atherosclerosis Risk in Communities Study, J Lipid Res, August 2009;50(8):1685-91.
30. Twisk JW, Kemper HC, Mellenbergh GJ, van Mechelen W, Relation between the longitudinal development of lipoprotein levels and biological parameters during adolescence and young adulthood in Amsterdam, The Netherlands, J Epidemiol Community Health, October 1996;50(5):505-11.
31. Bajer B, Rádiková Ž, Havranová A, Žitňanová I, Vlček M, Imrich R y cols., Effect of 8-weeks intensive lifestyle intervention on LDL and HDL subfractions, Obes Res Clin Pract, December 2019;13(6):586-93.
32. Pekkanen J, Linn S, Heiss G, Suchindran CM, Leon A, Rifkind BM, y cols., Ten-year mortality from cardiovascular disease in relation to cholesterol level among men with and without preexisting cardiovascular disease, N Engl J Med, 14 June 1990;322(24):1700-7.
33. Ekelund LG, Haskell WL, Johnson JL, Whaley FS, Criqui MH, Sheps DS, Physical fitness as a predictor of cardiovascular mortality in asymptomatic North American men. The Lipid Research Clinics Mortality Follow-up Study, N Engl J Med, 24 November 1988;319(21):1379-84.
34. Jeong S-W, Kim S-H, Kang S-H, Kim H-J, Yoon C-H, Youn T-J y cols., Mortality reduction with physical activity in patients with and without cardiovascular disease, Eur Heart J, 14 2019;40(43):3547-55.
35. Araszkiewicz A, Bandurska-Stankiewicz E, Budzyński A, Cypryk K, Czech A, Czupryniak L y cols., Zalecenia kliniczne dotyczące postępowania u chorych na cukrzycę 2019. Stanowisko Polskiego Towarzystwa Diabetologicznego, Diabetologia Praktyczna, 2019;5(1):1-100.
36. American Diabetes Association, 5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes-2020, Diabetes Care, January 2020;43(Suppl 1):S48-65.
37. American Diabetes Association, 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2019, Diabetes Care, 2019;42(Suppl 1):S103-23.
38. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V y cols., 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD, Eur Heart J, 07 2020;41(2):255-323.
39. Silva RC da, Diniz M de FHS, Alvim S, Vidigal PG, Fedeli LMG, Barreto SM, Physical Activity and Lipid Profile in the ELSA- Brasil Study, Arq Bras Cardiol, July 2016;107(1):10-9.
40. Haskell WL, Lee I-M, Pate RR, Powell KE, Blair SN, Franklin BA y cols., Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association, Med Sci Sports Exerc, August 2007;39(8):1423-34.
41. Leon AS, Sanchez OA, Response of blood lipids to exercise training alone or combined with dietary intervention, Med Sci Sports Exerc, June 2001;33(6 Suppl):S502-515; discussion S528-529.
42. Lira FS, Yamashita AS, Uchida MC, Zanchi NE, Gualano B, Martins E y cols., Low and moderate, rather than high intensity strength exercise induces benefit regarding plasma lipid profile, Diabetol Metab Syndr, 21 May 2010;2:31.
43. Shaw I, Shaw BS, Krasilshchikov O, Comparison of aerobic and combined aerobic and resistance training on low-density lipoprotein cholesterol concentrations in men, Cardiovasc J Afr, October 2009;20(5):290-5.
44. Global Recommendations on Physical Activity for Health [Internet]. Geneva: World Health Organization; 2010 [accessed on 08.07.2020]. (WHO Guidelines Approved by the Guidelines Review Committee). Available on http://www.ncbi.nlm.nih.gov/books/NBK305057/

Volver al artículo principal: La influencia del ejercicio en las lipoproteínas